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Abstract—The recent advancement in next-generation Con-
sumer Electronics (CE) has created the problems of information
overload and information loss. The significance of Personalized
Recommendation Systems (PRS) to efficiently and effectively
extract useful user information is seen as an ideal solution
to provide users with personalized content and services and
therefore is used in different application domains including
healthcare, e-commerce, social media, etc. Security and privacy
are the two major challenges of the existing PRS for next-gen
CE data. Federated learning (FL) has the potential to elevate
the aforementioned challenges by sharing local recommender
parameters while keeping all the training data on the device and
therefore is seen as a promising technique to enhance security and
privacy in PRS for the next-gen CE data. In this survey, we have
first discussed the enhancement of the existing CE technologies, a
holistic review of security and privacy challenges in current PRS,
and the advantage of FL-based PRS for next-gen CE. Finally, we
list a few open issues and challenges that can guide researchers
and practitioners to further drive research in this promising area.

Index Terms—Consumer Electronics, Federated Learning, Pri-
vacy, Personalized Recommendation Systems, Security

I. INTRODUCTION

HE recent advancement in Artificial Intelligence (AI) Vir-

tual Reality (VR)/Augmented Reality (AR), and Internet
of Things (IoT) has significantly revolutionized the Consumer
Electronics (CE) market. According to the “Statista Research
Department”, the global revenue of CE market will show an
increase of US$ 125.5 billion between 2023 and 2028 [1].
These facts show the tremendous and steep growth of the
CE devices and as a result, a “data lake” is expected to be
formed. The majority of CE is connected to the Internet to
offer consumers countless services [2]. However, the amount
of information on the Internet has significantly outpaced the
need of consumer requirements and, thus poses an informa-
tion overload problem that prevents timely access to online
resources of interest [3]. This has led to a greater-than-ever
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growth in demand for recommender systems. Recommender
systems are information filtering systems that address the
issue of information overload by selecting key information
fragments from enormous amounts of dynamically generated
data in accordance with user choices, interests, or observed
behavior towards the item [4]. Furthermore, there is a lot
of research being done on Personalized Recommendation
Systems (PRS), which leverage personalization in the domain
of product recommendations [5]. On another hand, most PRS
uses centralized servers to store and process consumer data.
Specifically, the cloud servers are equipped with powerful
computing resources and therefore are used to understand,
visualize and extract pertinent information. However, sending
the consumer confidential data to cloud servers brings some
inherent challenges related to security and privacy, where the
attacker or malicious cloud can hack or steal PRS data, and
it can result in data leaks and identity theft [6], [7]. The
data might also be sold to third-party companies that want
to utilize it for product recommendation, which is another
potential privacy problem.

Federated Learning (FL) is one of the emerging technolo-
gies that enable the execution of machine learning models in
a distributed manner. In FL-based PRS, CE devices are not
needed to exchange their own data; instead, they train on-
device using model parameters that are given by a coordinating
server [8]. The model is specifically trained locally by all
participating users, and updated model parameters are com-
municated with the cloud server to conduct aggregation and
to create a new set of parameters to be utilized in the following
iteration [9]. Until a specific degree of accuracy is reached, this
procedure is repeated continuously over a number of iterations.
Even though the FL-based PRS solves the security and privacy
issues of consumers but still it has some other challenges
related to computation and communication cost, explainability
in FL-based PRS, and working of FL-based PRS in 5G and
beyond networks.

A. Our Contribution

The main contributions of this survey paper are as follows:
First, we discussed the relationship between consumer elec-
tronics with personalized recommendation systems (PRS) and
how federated learning can enhance the security and privacy
challenges in PRS for the next-gen CE data. Second, we have
discussed the state-of-the-art techniques used to enhance data
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Fig. 1: Advancements in the Next-gen Consumer Electronics.

privacy and security and low-latency network communication.
The rest of the article is organized as follows: In Section II, we
gave an overview of next-gen CE, PRS, and FL. In Section III,
we discussed the shortcoming of PRS and how FL-based PRS
can enhance security and privacy. In Section IV, we discussed
the challenges in implementing FL-based PRS for next-gen
CE and finally, we conclude the paper in Section V.

II. PRELIMINARIES
A. Overview of Next-gen Consumer Electronics

Consumer electronics (CE) have always been a driving force
in technology innovation. From the invention of the television
to the first mobile phone, these devices have changed how
we communicate, entertain ourselves, and our daily lives [10],
[11]. Today, we are on the edge of the next generation of
consumer electronics (Next-gen CE), and the possibilities are
endless. Next-gen CE is the latest and upcoming electronic
device designed to enhance user experience and offer advanced
features, capabilities, and performance. These devices are
built using cutting-edge technologies characterized by their
ability to connect seamlessly with other devices, services, and
platforms. Fig. 1 shows the recent advancement in the next-gen
CE. Some of the key trends and advancements in the next-gen
CE include [2]:

1) Artificial Intelligence (Al) and Machine Learning (ML):
One of the most significant technological advancements over
the past decade has been the rise of Al and ML. These
technologies have been integrated into various industries,
including smart agriculture [12], healthcare [13], finance [14],
smart industries [15], and transportation [16]. Al and ML can
potentially revolutionize how we interact with our devices in
CE. For instance, smart homes and virtual assistants have made
significant progress in recent years, allowing us to control our
home devices with our voices. The Next-gen CE will have
more sophisticated Al and ML algorithms, enabling them to
learn from our behavior and provide personalized experiences
[3]. Moreover, Al and ML can enhance the cameras and

sensors on our devices. They can automatically adjust the
lighting, contrast, and focus based on the user’s environment,
ensuring the best possible photo or video. Furthermore, Al
can be used to power facial recognition technology, allowing
our devices to unlock or authenticate purchases with a single
glance [17].

2) Augmented reality: Augmented reality (AR) is another
technology molding the Next-gen CE. AR can lay over digital
content in the real world, resulting in a flawless blend of the
physical and virtual worlds. [18]. It is already being used in
mobile apps, such as Pokemon Go and Snapchat, but it is
expected to be used in a wider range of CE devices in the
future. AR could be used in smart glasses, for example, to
provide users with a heads-up display of information or to
overlay digital content onto real-world objects.

3) Virtual reality: Virtual reality (VR) is another tech-
nology that is shifting the Next-gen CE. VR can generate
immersive digital atmospheres in which users can interrelate
and explore. VR is already used in entertainment and gaming
[19], but it is likely to be used in a wider range of CE devices
in the upcoming years. It could be used in education to create
mesmerizing learning experiences, or in healthcare to imitate
medical procedures.

4) Extended Reality (XR): Extended Reality (XR) is a term
that defines the spectrum of technologies encompassing VR,
AR, and mixed reality (MR). XR is capable of changing the
way we experience education, medical treatment, entertain-
ment, and education [20]. The advancement in standalone VR
and AR headsets is one of the most substantial progresses in
XR. Such devices provide users with complete mobility by
not needing a smartphone or a PC to function. Further, they
are also affordable in price, making them more reachable to
the average consumer. XR can also be used to improve educa-
tional experiences by letting students discover historical sites,
witness scientific phenomena, and even conduct experiments
in a simulated environment [21].

5) Wearables: Wearable Technology (WT) has been around
for a while, with devices like smartwatches and fitness track-
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ers, becoming progressively popular in recent years. The next
generation of WT promises to be even more influential, with
devices that can measure the activity of a human brain, monitor
health metrics, and even analyze sweat to analyze hydration
levels [22]. WT will also become more integrated into our
daily lives. For example, smart clothing, which is capable of
monitoring vital signs and adjusting its temperature based on
the environment of the user. Wearables will also grow more
sophisticated, with gadgets that look like jewellery.[23].

6) Smart homes: The rise of smart homes will also change
the Next-gen CE. It uses internet-connected devices to au-
tomate and regulate several household tasks, such as light
systems, security, and heating [24]. Smart home devices are
already popular, with products like Amazon Echo and Nest
Thermostat [25]. Nevertheless, the next generation of smart
home devices is expected to be even more advanced. For
example, smart home devices could be furnished with Al
abilities to learn from the behavior of the user and make
decisions about controlling numerous household functions
[26].

B. Personalized Recommendation System

Recommendation technology (RT) is a key component of
IoT services since it may be in assistance of consumers in
getting information and better service anytime, anyplace [27].
A personalized recommendation system (PRS) is a type of
information filtering system that anticipates a user’s interests
or preferences and recommends content that is likely to be
of interest to them. These technologies are often employed
to deliver a more personalized experience for users in e-
commerce, social networking, and entertainment platforms.
[4]. Some key concepts in PRS are Content-Based Filtering
(CBF), Collaborative Filtering (CF), Hybrid Filtering (HF),
User Profile (UP), and Item Profile (IP). The CF is considered
the most well-known and adopted recommendation technique
[28], [29]. It predicts a user’s preferences based on the
preferences of other users who exhibit similar behavior or have
comparable interests. It can be based on user-based or item-
based similarity [30], [31]. The CF has no specific criteria,
such as metadata or description for the recommended goods.
It is capable of dealing with a wide range of things, including
books and music [32]. As a result, it has been widely used in
commercial applications [33].

On the other hand, CPF predicts a user’s preferences based
on the characteristics of the items that the user has interacted
with or shown interest in. It can be based on item features or
item descriptions [5]. Moreover, the HF combines CF and CBF
to provide personalized recommendations. It can overcome the
limitations of each technique and provide more accurate and
diverse recommendations [34]. According to a recent analysis
by the authors of [35], Amazon’s recommendation algorithm
accounted for more than 30% of the total sales volume.
Moreover, RS is a vital component of cloud computing [6], [7].
While the CF systems have seen significant success, several
disadvantages still remain, i.e., scalability cold-start, etc. The
researchers have proposed various techniques to solve such
issues. For example, the authors of [36]and [37] proposed
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Fig. 2: Architecture of FL for CE.

hybrid recommendation models to eliminate the cold-start.
Moreover, in [38], the authors claim that Singular Value De-
composition and Matrix Factorization models can efficiently
eliminate sparsity issues.

C. Federated Learning Concept

The demand for a significant amount of data for ML/DL
model training in CE has prompted a slew of projects aiming
at pooling data from disparate sources. The CE data, on the
other hand, may have substantial commercial value, making it
less to freely share with cloud providers.

Federated Learning (FL) addresses data governance chal-
lenges and privacy concerns by empowering shared learning
without data centralization. For example, FL resolves the issue
of insufficient data by providing data privacy, trust factor
between heterogeneous domains, and delocalization [39]. It is
an ML-based method that allows multiple devices or systems
to collaboratively train a model without sharing their raw data
with a Central Server (CS). Instead, the training takes place
locally on each device or system, and only the updates to the
model parameters are communicated to a CS, where they are
aggregated to form an improved model. At the same time,
having a model trained on larger landscape data is another
advantage of this federated environment. With its advanced ar-
chitectures, It has transformed many Al-based applications by
providing novel privacy-enhancing and distributed Al solutions
[40]. FL is especially appealing for constructing dispersed CE
systems because it pushes Al tasks, such as data training,
to the network edge at CE devices where the data resides.
Consequently, the data of the user is never exchanged openly
with a third party, consenting to cooperative training of a
shared Global Model (GM) that benefits the CE users and
network operators with regard to privacy improvement and
network resource savings.

The FL concept in CE networks comprises CE devices and
an Aggregation Server (AS). The AS is located at the Access
point (AP) or Base station (BS), as shown in Fig 2. In the
Next-gen CE network, the FL plays a vital role in achieving
complete intelligence in CE system at the network edge since

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3318754

TABLE I: Analysis of existing challenges for PRS in next-gen CE

Ref Mentioned challenges Security | Privacy | Confidentiality | Integrity | Authenticity Consequences

[41] Unauthorized access v X v v v Malicious control over the system
[42] Data breaches X v v X Leakage of sensitive data

[43] Fraudulent activities v X X X v Lack of trust in PRS

[44] Inference attack X v v X v Attackers may obtain private information.
[45] | The durability of the algorithm v X X v X Operational malfunctions in PRS
[46] Instant Response v X X v X Decrease in PRS usage

[47] Lack of transparency X v v X X Offers a smooth road to revealing privacy.

the BS is not capable of gathering the data from the scattered
CE devices for training. In the FL process, each CE user
trains a shared model where each device or system has its own
dataset, and they are not all combined into a central dataset.
After this, a Local Model (LM) trains the ML model on a
device or system using the local data. The LM is updated
with each training iteration and is used to compute the updates
that are sent to the CS. It is responsible for coordinating the
training process across the devices and systems. Hereinafter,
the CS receives updates from LMs and aggregates them to
form an improved GM without considerably compromising
the privacy of the user data. The model aggregation can
be performed using various techniques, including federated
averaging and FL with differential privacy [48].

III. OVERVIEW OF FL-BASED PRS FOR NEXT-GEN
CONSUMER ELECTRONICS

A. Security and Privacy Challenges in PRS for Next-gen
Consumer Electronics

Personalized Recommendation Systems (PRS) have sur-
prisingly revolutionized the way users interact with next-
gen CE by acting as an advisory bridge between CE and
end-consumers. However, some potential security and privacy
challenges are associated with it that possess notorious impacts
[49]. PRS majorly relies on collecting tons of consumers’ data,
including their interaction patterns, browsing history, cookies,
frequently called queries, etc. [50]. The data may also contain
personally Identifiable Information (PII), such as an identity
number, credit card details, and banking credentials. The data
stored in PRS is then analyzed to predict the behavior of
consumers towards a specific entity [31]. The entire process
of collecting, storing, and analyzing consumers’ data increases
the probability of malicious activities and makes PRS a fa-
vorite target for attackers. Unauthorized access to the system’s
resources is one of the most common adversarial practices
performed by the bad elements. Despite such unauthorized
access, the extensive operational process of PRS may have
consequences that may disclose the confidentiality, authentic-
ity, and even integrity of consumers’ data in some scenarios
[41]. Data breaching is another possible malicious approach
that may be performed by attackers to obtain valuable infor-
mation from consumers. Such a hazardous situation leads to
a variety of serious risks, including identity theft, misuse of
data, and reputational damage [42]. Access to online banking
data opens the door to a variety of finance-related fraudulent
activities as well, which is another serious challenge currently
surrounding PRS [43].

Inference attack is another major challenge in PRS that may
have critical outcomes. This attack is knowingly performed
with the bad intention of exploiting deterministic information
about the targeted audience. The inference attack adopts a
superficially precarious approach that is technically complex
in nature. The adversarial elements send a series of specially
constructed queries to the recommendation system and then
analyze the system’s responses against identical queries to
draw an answering pattern. After examining a handful of
streams of queries along with recommendations, the attacker
may retrieve sensitive information about the consumers that
was not intended to be disclosed. In the absence of an adequate
security matrix, PRS may be a desired target for such crucial
attacks that flash an alarming situation to exploit the privacy
and confidentiality of consumers [44]. Various research studies
objectify the algorithm of PRS in terms of its limited immunity
against mega-security threats. The algorithm is highly suscep-
tible to systematic alterations, leading to unfair analysis of data
and biased recommendations. The weakness of the algorithm
makes the overall durability of PRS a question mark [45].
In the case of next-gen CE, higher accuracy in recommen-
dations is a vital objective to be achieved. Additionally, the
recommendation system should be capable enough to provide
consumers with diversified recommendations for preferable
decision-making. The adaptability of new preferences from the
consumer side is another common phenomenon that modern
recommendation systems are suffering from. An effective PRS
should be responsive enough to adopt new preferences and
return up-to-date recommendations. The weak algorithm may
not only lack the ability to provide accurate and diversified
recommendations but may also lack the ability to maintain
updated recommendations [46].

The next major challenge is operational transparency to
avoid any misconceptions regarding the large amounts of
consumer data taken by PRS. While considering the confiden-
tiality and privacy norms of consumers’ data, the information
collected from individuals must be treated in an ethical way by
ensuring transparency in its usage [47]. Transparency should
also be provided in practical aspects by educating the end
consumers about the way recommendations are generated.
Some recommendation systems obtain consumer data irre-
spective of future use, including location and their interaction
patterns with other devices. Consumers must be aware of
the futuristic scope of this data and its possible relevance to
getting more personalized recommendations. The negligence
may encourage the unwanted sharing of this data with third-
party organizations for various other purposes. Hence, there

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3318754

Application Content Online Product
Layer | recommander | | -

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e

Interface
Layer

Authority Recommendation
Control Service API

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, T

Service User
Layer Profiling

................................ ‘.._................_....
Federated FATE | FATE Guest [ pate |—1  FaTE

Serving ” Data Access‘ Proxy | «— Exchange

Data API ‘

Loy

9 Recommendation
Manager i

Service

Monitoring
Data Provider

ATE | FATE Host

roxy [ Data Access ‘

——1 Data
: 7ataBasie/

Algorithm
Layer

Library

Data . Elastic
Layer HBase HIVE HDFS Redis Search

Fig. 3: Architecture of the Federated Recommender System [51].

must be an appropriate framework to provide consumers with
useful insight into their data and its processing operations to
get recommendations about next-gen CE. Table I provides a
comprehensive insight into the existing challenges for PRS in
next-gen CE.

1) Secure Data Sharing Issues: While employing a PRS for
specific recommendations in next-gen CE, secure data sharing
between authorized entities should be the prominent objective.
To meet such desired secure communication challenges, PRS
must be competent enough to mitigate the possibilities of any
unwanted data security threat in the future. PRS collects a
diversified variety of consumer data to ensure its smooth oper-
ations and to provide optimized recommendations. Generally,
the more detailed information about the consumers is, the more
accurate will be the generated recommendation [52]. Accord-
ingly, the risks of significant data security threats increase,
urging the need for a secure data exchange framework between
end-consumers and PRS. When the extracted data consists of
critical information of consumers, e.g. PII, financial details,
and medical data, the need for secure data sharing increases
exponentially [53], there are several possible ways for data
leakage in PRS designed for next-gen CE.

The data obtained from consumers is stored in PRS data
repositories, and insufficient access control over such data
databases offers a smooth ground for malicious attempts
on consumers’ data. The successful attempts result in data
leakage, data tempering, or even the elimination of important
information [54]. Hence, it becomes a vital challenge to protect
these databases from attackers by designing comprehensive
access controls. PRS formulates a generic systematic archi-
tecture in which the data communication from consumers to
PRS repositories is regulated through a central server [55].
This plane transmission channel is easier to take over than a
secure communication line containing end-to-end encrypted
data [56]. In the case of next-gen CE, most consumers’
devices are integrated with third-party mobile applications that
take unauthorized control of that particular device. Hence,
the data transmitted from or to such devices is observed
by some third-party element triggering the chances of data
breaches [57]. Most of the back-end algorithms of PRS are
empowered by cloud services to instantly adopt new consumer
preferences and ensure instant recommendations in return. If
a secure communication protocol does not leverage the data

transmission, the swear data exposure may occur to sabotage
the confidentiality and privacy of consumers’ data [58]. The
possible data communication challenges for PRS in next-gen
CE are enlisted in Table II.

2) Resource-Constrained Consumer Devices: The term”
Resource-Constrained” describes the availability of limited
resources. From a CE perspective, the resource-constrained
nature of devices indicates small devices with less compu-
tation power, storage, and processing units. The integration
of PRS with next-gen resource-constrained CE is encircled
by an extensive range of challenges that must be addressed
appropriately. Most next-gen CE, such as wearables, smart-
watches, and small gaming units, come with limited com-
putational resources. That fact hinders their way of reflect-
ing effective collaboration with PRS [59]. The availability
of limited computational capacity is not an ideal situation
for running complex and optimized PRS algorithms. These
circumstances introduce the concept of lightweight algorithms.
However, various studies have proven the compromised nature
of lightweight algorithms. Hence, there is a trade-off between
the security and convenient execution of PRS algorithms on
next-gen CE. Resource-constrained CE may also negatively
impact the trustworthiness of PRS by blocking their way of
implementing complex security measures. The high-efficiency
privacy and data security protocols have convoluted processing
that expects an adequate implementation ecosystem. Resource-
constrained CE needs to welcome such complex computational
alliances resulting in unsatisfactory security practices [60].

The next dominant challenge is finite memory units in CE
that are good enough for their own. However, it requires
large memory units to be compatible enough with PRS as
broad memory bases invite extended data arrays that act as a
supplement for more accurate recommendations by PRS [61].
Communication limitations are another notable challenge for
PRS to be operational for next-gen CE. Most of the PRS
are empowered by various cloud services to respond to CE
with personalized recommendations instantly. However, the
resource-constrained CE may suffer from poor connectivity
issues because of limited communication resources. This may
impact the overall quality of the communication stream by
causing latency, unwanted noise, and even communication
breakage in the worst cases. As a result of this resource-
constrained nature of CE, it becomes a hectic task to inter-
act and be synchronized with the cloud service configured
between PRS and next-gen CE [62]. The instant response
from CE is also a significant challenge for PRS. As the
resource-constrained CE are equipped with limited resources,
it becomes difficult for such devices to exhibit synchronized
progress with the cloud server connecting PRS with CE.
This scenario results in the slow performance of PRS and
unnecessary communication delays [63]. Power consumption
is another crucial factor in resource-constrained CE. These
devices are powered by small-scale batteries that do not
offer enough support to cater to intensive recommendation
algorithms [64].

Moving forward, scalability is another serious challenge
PRS must face while entertaining next-gen CE. It is observed
that each CE device has its predefined working attributes and
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TABLE II: Secure data communication challenges in PRS

Ref Challenges Consequences Possible Combats

[54] Security of PRS data repositories Data breaches may occur Implementing access controls

[55] Protecting central data governance server Disclosing confidentiality and privacy of consumers | Ensuring a reliable authentication mechanism
[56] Ensuring end-to-end encrypted data stream Sniffing or observing sensitive data Imposing a complex encryption protocol
[57] Data safety against third-party applications Data leaks, unauthorized access to information Making some data-sharing policies

[58] | Implementing a secure data communication channel Information disclosure to attackers Establishing a secure communication protocol

processing patterns. To obtain more accurate recommenda-
tions, it is advised to broaden the databases containing data
from various identical units by creating a cluster of relevant
CE devices. This practice helps to collect vast amounts of
data and, after necessary processing, yields comprehensive
recommendations to all participant CE devices. Due to the
predefined interaction pattern, and lack of quick alterations,
CE devices lack to shake hands with other identical CE
devices. While expanding the application brackets of PRS over
multiple CE devices becomes an unsettled task to configure
multiple CE over PRS [65]. A broader overview of challenges
for PRS in resource-constrained next-gen CE is given in Table
1.

B. FL-based PRS for Next-gen Consumer Electronics: Char-
acteristics and Impact

The next-generation consumer electronics environs smart
devices purely designed at the consumer grade such as wear-
able, body implants, virtual reality gadgets, personal entertain-
ment units, etc. Their intelligent nature makes them entirely
different from traditional electronic devices. The warm adapt-
ability of such next-generation consumer electronics devices
demands these devices to be more functional and efficient.
Therefore, PRS are integrated to make the user experience
better. A PRS effectively analyzes scalable data and provides
optimal suggestions recommended by the recommendation
engines. PRS must need to be capable to accommodate the ex-
pectations of clients. However, we have seen that the learning
process of PRS raises serious security and privacy challenges
due to the fact that the CE data is often stored and analyzed
on centralized cloud storage. FL has the ability to overcome
this challenge by training the model on the devices. FL-based
PRS are well-trained, which made them an excellent choice
for next-generation consumer electronics.

1) Data Privacy and Security Enhancement: FL enables
participant devices to jointly learn a shared prediction model.
This method keeps the training data on the device, rather than
uploading and storing the data on a central server. FL also
employs secure aggregation to maintain the confidentiality
of client updates. As a result, the server is unable to deter-
mine the value or source of the users’ model updates. This
diminishes the probability of inference and data attribution
attacks. Typically sensitive scenarios that intend to stringent
privacy regulations, gain security advantages by the local
storage of personal information. It alleviates the burden of
aggregating data on a central and external server, thereby
making the data less vulnerable to breaches. The central server
is the core coordinator, and it manages clients, centralizes
their local models, and keeps the global model up-to-date. FL

optimization is an iterative process that improves the global
ML model with each iteration. FL is generally based on pre-
defined parameters in an initial training phase. The model
parameters are then disseminated to the participating clients
and will be revised based on client feedback in subsequent
steps. In the local model training, a list of participants is
established where each client receives the global model and
fine-tuning parameters, which are based on their local data for
a given number of training epochs. The updated model weights
are then transmitted to the central server to update the global
model. The central server accumulates the updated models of
all participating clients. Then by combining their parameters,
it produces an updated general model.

To reduce biases, this step must incorporate multiple factors,
including client confidence and participation frequency. In
a decentralized system, there is no longer a central server
that acts as an initiator, coordinator, or model aggregator.
Researchers have designed an anomaly detection framework
to investigate the presence of unwanted entities in loT-enabled
smart environments. The proposed scheme classifies possible
attacks by consuming minimal computational resources. The
FL-based operational segment is devoted to ensuring on-device
training of local data models, and the Gated Recurrent Unit
(GRU) offers extra layers of security to ensure the privacy of
clients. The model proves a protected shield against common
adversaries e.g. man-in-the-middle attacks, Denial of Service
(DoS) attacks, and Modbus query flood attacks [66]. Another
effort towards privacy preservation is made in [67], which
mainly focuses to prohibit the retrieval of irrelevant informa-
tion. The model filters the spam images in the raw data, and
after that, these responsible clients are flagged to take part in
the training phase. The system is employed with Convolutional
Neural Network (CNN) and is trained on a customized dataset.
In [68], the Authors addressed the integration of blockchain
technologies with the FL to enhance the security and privacy
metrics. A smart contract-based secure algorithm is proposed
that directly measures the accuracy of the updated global
model. Thus, it is unnecessary to assume that participants
in the FL training process are trustworthy. Initial findings
indicate that the algorithm offers a high degree of protection
against model poisoning attacks. They anticipate that the
obtained results can be used as a baseline for implementing
the algorithm on various blockchain technologies.

Blockchain driven another security approach is described
[69], where authors Develop a blockchain-enabled decen-
tralized and asynchronous FL-based IoT anomaly detection
scheme. The proposed method has the potential to boost
efficiency while remaining robust and privacy-preservative.
Researchers have designed a novel privacy-preserving tree-
boosting algorithm named Secure Boost [70]. The core ob-
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TABLE III: Analysis of existing challenges for PRS in next-gen CE

Ref Category Consequences Trade-off

[59] Computation Limitations in computing complex recommendation algorithms Reliable data exchange
[60] Processing Poor performance in running secure communication protocols Data security and privacy
[61] Memory Unable to store vast data attributes for comprehensive recommendations Accurate recommendations
[62] | Network connectivity Incapable of maintaining synchronous connectivity with cloud services Stable communication
[63] Responsiveness No instant response to cloud services of PRS Instant response

[64] Power Not enough power to execute time-intensive computations Long-run processing
[65] Scalability Configuration issues with other identical CE devices Multi-facet recommendations

jective is to train a high-quality model with private data
separated over multiple clients. Secure Boost aligns entities
under a privacy-preserving protocol and then builds boosting
trees across multiple parties using a carefully designed en-
cryption strategy. This FL system lets multiple parties with
common user samples but different feature sets jointly learn
from a vertically partitioned dataset. The Secure Boost model
embraces identical accuracy with non-federated gradient tree-
boosting algorithms.

2) Low-latency Network Communication: Latency is an
imperative component to evaluate the performance of a com-
munication system. It states the duration taken by a data packet
to travel from the sender to the receiver end. In traditional ML
approaches, the clients send raw data to the server end, unnec-
essarily occupying the bandwidth for a sustainable period [71].
However, FL has outpaced this concept by introducing a new
pattern of communication. It enables the clients to transmit
only the updated model parameters rather than sending whole
chunks of raw data. In this way, the network resources are
efficiently managed, and considerably low latency occurs in
the communication channel [72]. The latency in FL systems
is remarkably lower than the centralized systems. Such perfor-
mance makes FL an ideal choice for sensitive networks where
minor communication delays may result in severe reactions.
Health monitoring systems, sensitive manufacturing units, and
smart grids are some valuable examples of aforementioned
sensitive networks [73].

The second major FL component is latency-based schedul-
ing or preferred scheduling. In normal ML approaches, the
clients are imposed to send a whole stream containing the
raw data, and this data is revised in each iteration [74]. That
mechanism overburdened the system resources, especially the
network bandwidth remain occupied. However, FL permits
preferred scheduling in which the parameters are preferably
defined. The clients are supposed to follow these parameters,
and they do not even need to propagate an entire stream of
data. Rather, they transmit only the updated models. In this
way, FL calculates the time consumption of each iteration,
which makes the communication process more robust, and
responsive [75].

IV. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

In this section, we have discussed the challenges of imple-
menting FL for PRS. The main challenges are listed below:

A. Computation and Communication Cost

Computing and communication play a critical role to
achieve PRS optimized performance. User devices need to
communicate and update various intermediate parameter val-
ues with the server to generate recommendation results in their
local system. This can pose a huge communication overhead
which directly impacts the model performance. Additionally,
users of consumer electronics devices and infrastructure may
have varying capabilities relating to storage, speed, and com-
putational power that certainly impact the overall training
efficiency, delaying the whole process and reducing the effi-
ciency of the global recommendation model [76]. However,
communication cost incurs much great overhead cost than
computation in case numerous users’ devices are sending
their model parameters to the central server [77]. There is a
pressing need to reduce the computation and communication
cost within Next-gen CE for an efficient recommendation
model for individual users’ needs.

Several methods are proposed which aim to improve the
model efficiency and reduce the computation and communica-
tion overhead notably important-based model updating, client
selection, model compression, asynchronous communication,
etc. Important-based model update strategy considers an im-
portant part of the global model to reduce the communicate
parameterized size instead of choosing all parameters. A
multi-arm bandit method (FCF-BTS) is proposed which aims
to select a specific part of the global model for a smaller
payload to the client [78]. However, this approach also reduces
the overall model accuracy. The client selection approach
selects clients based on resource constraints such as limited
computation resources or poor wireless channel conditions
instead of random client selection to enhance the efficiency and
performance of the global model. Fedcs protocol is considered
where the server sends a resource request to each client to
check the downloading, updating, and uploading time of local
models so that the server can update the clients during the
restricted time by following the greedy approach [79]. The
shortest upload time is considered to select the client followed
by a scheduling mechanism based on the maximum remaining
bandwidth for enhancing the uploading efficiency[8]. Model
compression is another widely used method that compresses
the communication parameters for each communication which
reduces the scale of parameter transmission. A novel coreset-
based FL framework is considered that investigates the data
redundancy in the dataset that trains corsets instead of training
the whole dataset using the regular network model and similar
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accuracy is achieved [9]. Structured and sketched updates are
considered to decrease the uplink communication costs by
updating from a pre-specified structure parameterized using
fewer variables or compressing the full local update before
communicating to the server.

Despite all these methods, there are still challenges to tackle
the computation and communication cost issues. In particular,
important-based model updating reduces the recommendation
performance as well as raises privacy concerns. Due to the
diversity of the users’ devices and the inherent complexity
of the users’ network environment client selection problem
requires an optimized selection approach. Model compression
significantly reduces the communication cost but at the same
time increases the overall computational overhead. To this end,
future research directions need to investigate trade-off issues
between computation and communication cost based on the
users’ consumer devices capacity and infrastructure as well as
develop methods to achieve optimal compression of network
model parameters taken into account the trade-off parameters.
Additionally, the design of efficient and trustworthy FL for
PRS is also required to improve overall efficiency and reduce
communications costs. Generally, user consumer electronic
devices are intelligent and numerous devices are connected
to the dynamic and complex infrastructure, therefore client
selection model should also need to follow the dynamic
schedule strategy to ensure robust performance from the users’
devices.

B. Explainability in FL-based PRS

As stated previously, FL. empowers data sharing while
preserving privacy within a decentralized context. PRS heavily
relies on the data for developing informed recommendation
models. Federated Recommended Systems (FedRS) is now
widely considered to improve recommendation performance
with the ability to collaborate the data from different systems.
However, despite these significant benefits, FEARS exhibits
many challenges some of which are discussed notably relating
to the computation and communication costs and privacy.
Additionally, stakeholders within the PRS ecosystem including
users and service providers also demand a transparent, fair,
and understandable PRS model which should be accurate and
meaningful to them [80]. Explainability (XAI) is the core for
the development of trustworthy FedRS models, which ensure a
certain level of explainability (i.e., details and reasons a model
gives to make its functioning clear or easy to understand) and
transparency (i.e., characteristics of a model to be inherently
understandable for a human) of the generated models [81],
[82]. European Commission’s Ethic Guidelines for Trustwor-
thy Al mentioned that “Al systems and their decisions should
be explained in a manner adapted to the stakeholder con-
cerned” [83]. The XAl in FL should ensure an adequate degree
of explainability of the FL-based PRS to develop FedRS. To
this end, XAI in FL aims to contribute trustworthy PRS that
ensures a transparent, fair, and understandable recommended
system to all user levels.

Explainability for PRS ensures that the models should be
easily understandable and provide straightforward reasoning

for the recommendation results. However, this task is quite
challenging specifically the development of a trustworthy, un-
biased, and understandable PRS model requires multiple stages
including data presentation, recommendation, and evaluation
in a complex and dynamic environment. To this end, future
work needs to focus on developing methods and models within
multiple aspects including novel data processing techniques,
FL-based explainable learning models, and advanced repre-
sentation learning techniques that aim to remove the bias and
retain the genuine data while preserving the privacy of the
extracted data [84] [76]. Additionally, the PRS model needs
to consider beyond accuracy oriented approach for an effective
trustworthy model evaluation. In this context, future direction
needs to consider the development of novel trustworthiness
evaluation schemes and metrics from both technical and ethical
dimensions taking into account the accuracy, transparency,
explainability, and privacy of the model as well as the model’s
impact on the potential user groups. The aforementioned future
directions advocate to consider human-centric approaches for
achieving Explainability in FL-based PRS.

C. Integration of 5G and Beyond Networks

The emergence of 5G technology significantly increases
the wider adoption of PRS due to the high data transmis-
sion rate and low energy consumption across the networks
within diverse platforms. This technology facilities faster high-
volume data transmission and supports the development of
real-time PRS by reducing the time interval between the
user’s behavior and the system’s feedback and updating the
recommendation model accordingly. Therefore 5G accelerates
the development of the PRS based on the evolving needs of
the relevant stakeholder. Data for the PRS can be collected
from various sources including cloud infrastructure which
certainly increase the transmission latency and volume and
the processing model of 5G can determine based on the data
and latency. The application of 5G technology in the PRS
will improve efficiency and enhance the user experience with
the recommended system. Despite the benefits, 5G can also
pose challenges specifically relating to potential cyber-attacks
and data leakage due to the transmission of huge data volume
[85] [86]. Therefore, there is a need to develop methods and
techniques to enhance the capability of real-time PRS with the
integration of 5G technology.

The future research direction of PRS needs to develop robust
algorithms for the real-time PRS model driven by 5G and
other technologies including Al and IoT. PRS needs to provide
a good user interface so that the user can easily understand
and operate with the personalized recommendation model and
value the identified products. 5G can process large volumes of
data which can provide better-customized recommendations,
but this can pose data leakage and loss [87]. It is necessary to
develop new models and techniques to reduce the transmission
delay and filter unnecessary information for a more secure and
reliable recommendation system.

V. CONCLUSION

In this review paper, we discussed the next-generation
consumer electronics and how personalized recommendation
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systems can accurately model user preferences from their
historical interactions. Then, we discussed the security and
privacy challenges of personalized recommendation systems
and the importance of federated learning to enhance data
privacy and security with low-latency network communication.
Finally, we outlined a few challenges that need to be addressed
while implementing federated learning-based personalized rec-
ommendation systems for next-gen consumer electronics.
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